π² Anti-Exploration by Random Network Distillation, Tinkoff Research, ICML 2023
We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.
π₯ Github: https://github.com/tinkoff-ai/sac-rnd
π€ Paper: https://proceedings.mlr.press/v202/nikulin23a.html
@Machine_learn
We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.
π₯ Github: https://github.com/tinkoff-ai/sac-rnd
π€ Paper: https://proceedings.mlr.press/v202/nikulin23a.html
@Machine_learn
π1
MLBasicsBook.pdf
3.3 MB
Book: Machine Learning: The Basics
Authors: Alexander Jung
ISBN: -
year: 2023
pages: 287
Tags:#ML
@Machine_learn
Authors: Alexander Jung
ISBN: -
year: 2023
pages: 287
Tags:#ML
@Machine_learn
π₯4π2β€1
π AgentBench: Evaluating LLMs as Agents.
AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
π₯ Github: https://github.com/thudm/agentbench
π Paper: https://arxiv.org/abs/2308.03688v1
βοΈ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.
π₯ Github: https://github.com/thudm/agentbench
π Paper: https://arxiv.org/abs/2308.03688v1
βοΈ Dataset: https://paperswithcode.com/dataset/alfworld
@Machine_learn
Enthought-v1.0.2.pdf
2.4 MB
Plotting with Pandas series
@Machine_learn
@Machine_learn
β
SSLRec: A Self-Supervised Learning Library for Recommendation
SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.
π₯ Github: https://github.com/hkuds/sslrec
π Paper: https://arxiv.org/abs/2308.05697v1
β Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
βοΈ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
ai_machinelearning_big_data
SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.
π₯ Github: https://github.com/hkuds/sslrec
π Paper: https://arxiv.org/abs/2308.05697v1
β Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
βοΈ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md
ai_machinelearning_big_data
π3β€1
LightTBNet
π₯ Github: https://github.com/dani-capellan/LightTBNet
π Paper: https://arxiv.org/pdf/2309.02140v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/montgomery-county-x-ray-set
@Machine_learn
π₯ Github: https://github.com/dani-capellan/LightTBNet
π Paper: https://arxiv.org/pdf/2309.02140v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/montgomery-county-x-ray-set
@Machine_learn
π1
LLM_Fine_Tuning_Molecular_Properties
π₯ Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
π Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
π₯ Dataset: https://paperswithcode.com/dataset/moleculenet
@Machine_learn
π₯ Github: https://github.com/SylwiaNowakowska/LLM_Fine_Tuning_Molecular_Properties
π Paper: https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/65030b55b338ec988a780108/original/chem-ber-ta-2-fine-tuning-for-molecule-s-hiv-replication-inhibition-prediction.pdf
π₯ Dataset: https://paperswithcode.com/dataset/moleculenet
@Machine_learn
β€1π1
π Gold-YOLO: Efficient Object Detector via Gather-and-Distribute Mechanism
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales.
π₯ Github: https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO
π Paper: https://arxiv.org/abs/2309.11331v2
β© Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
Gold-YOLO, which boosts the multi-scale feature fusion capabilities and achieves an ideal balance between latency and accuracy across all model scales.
π₯ Github: https://github.com/huawei-noah/Efficient-Computing/tree/master/Detection/Gold-YOLO
π Paper: https://arxiv.org/abs/2309.11331v2
β© Dataset: https://paperswithcode.com/dataset/coco
@Machine_learn
InstructionERC
π₯ Github: https://github.com/LIN-SHANG/InstructERC
π Paper: https://arxiv.org/pdf/2309.11911v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
π₯ Github: https://github.com/LIN-SHANG/InstructERC
π Paper: https://arxiv.org/pdf/2309.11911v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/iemocap
@Machine_learn
β€1
Forwarded from Eng. Hussein Sheikho
This channels is for Programmers, Coders, Software Engineers.
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
β Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0
β Main Channel:
https://www.tg-me.com/DataScienceM
0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages
β Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0
β Main Channel:
https://www.tg-me.com/DataScienceM
π7β€1
π£ Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition
π₯ Github: https://github.com/wenet-e2e/wespeaker
π Paper: https://arxiv.org/abs/2309.11730v1
β© Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
βοΈ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
pip3 install wespeakerruntime
π₯ Github: https://github.com/wenet-e2e/wespeaker
π Paper: https://arxiv.org/abs/2309.11730v1
β© Demo: https://huggingface.co/spaces/wenet/wespeaker_demo
βοΈ Dataset: https://paperswithcode.com/dataset/wenetspeech
@Machine_learn
π BayesDLL: Bayesian Deep Learning Library
New Bayesian neural network library for PyTorch for large-scale deep network
π₯ Github: https://github.com/samsunglabs/bayesdll
π Paper: https://arxiv.org/abs/2309.12928v1
βοΈ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
New Bayesian neural network library for PyTorch for large-scale deep network
π₯ Github: https://github.com/samsunglabs/bayesdll
π Paper: https://arxiv.org/abs/2309.12928v1
βοΈ Dataset: https://paperswithcode.com/dataset/oxford-102-flower
@Machine_learn
π4β€3
Artificial Intelligence Class 10 (2023).pdf
20.8 MB
Book: ARTIFICIAL INTELLIGENCE (SUBJECT CODE 417) CLASS β 3
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
π8π₯1
LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models
π₯ Github: https://github.com/dvlab-research/longlora
π Paper: https://arxiv.org/pdf/2309.12307v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
π₯ Github: https://github.com/dvlab-research/longlora
π Paper: https://arxiv.org/pdf/2309.12307v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/pg-19
@Machine_learn
π1
β fastMONAI: A low-code deep learning library for medical image analysis
Simplifying deep learning for medical imaging.
π₯ Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
π Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
π₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
Simplifying deep learning for medical imaging.
git clone https://github.com/MMIV-ML/fastMONAI
π₯ Github: https://github.com/MMIV-ML/fastMONAI
Project: https://fastmonai.no
π Paper: https://www.sciencedirect.com/science/article/pii/S2665963823001203
π₯ Colab: https://colab.research.google.com/github/MMIV-ML/fastMONAI/blob/master/nbs/10a_tutorial_classification.ipynb
@Machine_learn
π4
30574277.pdf
20.5 MB
Book: Quantum Mechanics and
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Bayesian Machines
Authors: George Chapline
Lawrence Livermore National Laboratory, USA
ISBN: Null
year: 2023
pages: 194
Tags:#QM #BM
@Machine_learn
Privacy-preserving in-context learning with differentially private few-shot generation
π₯ Github: https://github.com/microsoft/dp-few-shot-generation
π Paper: https://arxiv.org/pdf/2309.11765v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
π₯ Github: https://github.com/microsoft/dp-few-shot-generation
π Paper: https://arxiv.org/pdf/2309.11765v1.pdf
π₯ Dataset: https://paperswithcode.com/dataset/ag-news
@Machine_learn
π1
Developing Apps With GPT-4 and ChatGPT (2023).pdf
3 MB
Book: Developing Apps with GPT-4 and
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
ChatGPT
Authors: Build Intelligent Chatbots, Content Generators, and More
ISBN: 978-1-098-15248-2
year: 2023
pages: 117
Tags:#GPT
@Machine_learn
π1
This media is not supported in your browser
VIEW IN TELEGRAM
βοΈ Deep Geometrized Cartoon Line Inbetweening
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
π₯ Github: https://github.com/lisiyao21/animeinbet
βοΈ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
π Paper: https://arxiv.org/pdf/2309.16643v1.pdf
βοΈ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
Method can effectively capture the sparsity and unique structure of line drawings while preserving the details during inbetweening.
π₯ Github: https://github.com/lisiyao21/animeinbet
βοΈ Demo: https://youtu.be/iUF-LsqFKpI?si=9FViAZUyFdSfZzS5
π Paper: https://arxiv.org/pdf/2309.16643v1.pdf
βοΈ Dataset: https://drive.google.com/file/d/1SNRGajIECxNwRp6ZJ0IlY7AEl2mRm2DR/view?usp=sharing
@Machine_learn
π4
Oreilly.Generative.Deep.Learning.pdf
57.9 MB
Book: Generative Deep Learning
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
Teaching Machines to Paint, Write, Compose, and Play
Authors: David Foster
ISBN: 978-1-098-13418-1
year: 2023
pages: 456
Tags:#GAN
@Machine_learn
β€5