Telegram Web Link
This media is not supported in your browser
VIEW IN TELEGRAM
⭐️ScrollNet: Dynamic Weight Importance for Continual Learning

git clone https://github.com/FireFYF/ScrollNet.git
cd ScrollNet

🖥 Github: https://github.com/firefyf/scrollnet

📕 Paper: https://arxiv.org/abs/2308.16567v1

🔥 Dataset: https://paperswithcode.com/dataset/tiny-imagenet

@Machine_learn
⚡️ Improving Pixel-based MIM by Reducing Wasted Modeling Capability

A new method that explicitly utilizes low-level features from shallow layers to aid pixel reconstruction.



🖥 Github: https://github.com/open-mmlab/mmpretrain

📕 Paper: https://arxiv.org/abs/2308.00261v1

⭐️Project: mmpretrain.readthedocs.io/en/latest/

☑️ Dataset: https://paperswithcode.com/dataset/coco

@Machine_learn
با عرض سلام موضوعات پيشنهادي تز
برای دوستانی که نیاز دارن در ادامه اورده شده است.


master thesis

پيش بيني بار كوتاه مدت با استفاده از رويكردهاي يادگيري تركيبي

طبقه بندي رضايت مشتريان بانكي و موسسات اعتباري با استفاده از رويكردهاي بازگشتي

طبقه بندي اخبار جعل با استفاده از رويكرد تنسور سه بعدي و bert

پيشبيني قيمت سهام با استفاده از اطلاعات تويتر و ماركت

پيش بيني قيمت crypto با استفاده از اطلاعات hashrate

phd thesis

بهبود رویکردهای یادگیری عمیق بر روی اخبار جعل و شایعات

بهبود رویکرد های یادگیری عمیق ترکیبی جهت دستیابی به پورتوفولی بهینه

بهبود رویکردهای ترکیبی یادگیری عمیق برای طبقه بندی crypto با استفاده از اطلاعات hashrate

ارائه رویکردهای مبتنی بر وزن دهی غیر تصادفی در یادگیری عمیق

بهبود یادگیری انتقالی در سری زمانی

ارائه مدل های انتقالی برای طبقه بندی های سری زمانی

جهت مشاوره موضوعات می تونین با بنده در ارتباط باشین


@Raminmousa
LISA: Reasoning Segmentation via Large Language Model

New segmentation task -- reasoning segmentation. The task is designed to output a segmentation mask given a complex and implicit query text.


🖥 Github: https://github.com/dvlab-research/lisa

📕 Paper: https://arxiv.org/abs/2308.00692v2

☑️ Dataset: https://github.com/dvlab-research/lisa#dataset

@Machine_learn
🎲 Anti-Exploration by Random Network Distillation, Tinkoff Research, ICML 2023

We propose a new ensemble-free offline RL algorithm called SAC-RND. We evaluate our method on the D4RL (Fu et al., 2020) benchmark, and show that SAC-RND achieves performance comparable to ensemble-based methods while outperforming ensemble-free approaches.


🖥 Github: https://github.com/tinkoff-ai/sac-rnd

🤓 Paper: https://proceedings.mlr.press/v202/nikulin23a.html

@Machine_learn
MLBasicsBook.pdf
3.3 MB
Book: Machine Learning: The Basics
Authors: Alexander Jung
ISBN: -
year: 2023
pages: 287
Tags:#ML
@Machine_learn
🚀 AgentBench: Evaluating LLMs as Agents.

AgentBench, a multi-dimensional evolving benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities in a multi-turn open-ended generation setting.


🖥 Github: https://github.com/thudm/agentbench

📕 Paper: https://arxiv.org/abs/2308.03688v1

☑️ Dataset: https://paperswithcode.com/dataset/alfworld

@Machine_learn
SSLRec: A Self-Supervised Learning Library for Recommendation

SSLRec, a novel benchmark platform that provides a standardized, flexible, and comprehensive framework for evaluating various SSL-enhanced recommenders.


🖥 Github: https://github.com/hkuds/sslrec

📕 Paper: https://arxiv.org/abs/2308.05697v1

Models: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md

☑️ Datasets: https://github.com/HKUDS/SSLRec/blob/main/docs/Models.md

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Eng. Hussein Sheikho
This channels is for Programmers, Coders, Software Engineers.

0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages

Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0

Main Channel:
https://www.tg-me.com/DataScienceM
🗣 Leveraging In-the-Wild Data for Effective Self-Supervised Pretraining in Speaker Recognition


pip3 install wespeakerruntime

🖥 Github: https://github.com/wenet-e2e/wespeaker

📕 Paper: https://arxiv.org/abs/2309.11730v1

Demo: https://huggingface.co/spaces/wenet/wespeaker_demo

⭐️ Dataset: https://paperswithcode.com/dataset/wenetspeech

@Machine_learn
🎓 BayesDLL: Bayesian Deep Learning Library

New Bayesian neural network library for PyTorch for large-scale deep network


🖥 Github: https://github.com/samsunglabs/bayesdll

📕 Paper: https://arxiv.org/abs/2309.12928v1

⭐️ Dataset: https://paperswithcode.com/dataset/oxford-102-flower

@Machine_learn
Artificial Intelligence Class 10 (2023).pdf
20.8 MB
Book: ARTIFICIAL INTELLIGENCE (SUBJECT CODE 417) CLASS – 3
Authors: Orange Education Pvt Ltd
ISBN: Null
year: 2023
pages: 619
Tags:#AI
@Machine_learn
2025/07/07 14:17:24
Back to Top
HTML Embed Code: