Telegram Web Link
Forwarded from Eng. Hussein Sheikho 👨‍💻
The Data Science and Python channel is for researchers and advanced programmers

https://www.tg-me.com/DataScienceT

Recognize Anything: A Strong Image Tagging Model

Get ready for a breakthrough in the realm of AI: introducing the Recognize Anything Model (RAM), a powerful new model that is set to revolutionize image tagging. RAM, a titan in the world of large computer vision models, astoundingly exhibits the zero-shot ability to recognize any common category with an impressive level of accuracy. Shattering traditional approaches, RAM employs a unique paradigm for image tagging, utilizing large-scale image-text pairs for training instead of relying on tedious manual annotations.

Paper link: https://arxiv.org/abs/2306.03514
Code link: https://github.com/xinyu1205/recognize-anything
Project link: https://recognize-anything.github.io/

A detailed unofficial overview of the paper: https://andlukyane.com/blog/paper-review-ram

#deeplearning #cv #imagecaptioning
@Machine_lean
Benchmarking Test-Time Adaptation against Distribution Shifts in Image Classification

🖥 Github: https://github.com/yuyongcan/benchmark-tta

Paper: https://arxiv.org/pdf/2307.03133v1.pdf

💨 Dataset: https://paperswithcode.com/imagenet

@Machine_learn
Modeling and Simulation in Python.pdf
8.1 MB
Book: MODELING AND SIMULATION
IN PYTHON AN INTRODUSTENNINGERSCIENTISTS
Authors: Allen B. Downey
ISBN: 978-1-7185-0217-8
year: 2023
pages: 344
Tags:#Python #"Modeling
@Machine_learn
با عرض سلام دو پکیچ یادگیری ماشین(یادگیری پایتون، تنسورفلو،کراس) و یادگیری عمیق پیشرفته با تخفیف ۷۰٪ برای دوستان گذاشتیم. جهت خرید می تونین به ایدی بنده پیام بدین.
@Raminmousa
🌆Censored Sampling of Diffusion Models Using 3 Minutes of Human Feedback

🖥 Github: https://github.com/tetrzim/diffusion-human-feedback

Paper: https://arxiv.org/pdf/2307.02770v1.pdf

💨 Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
AnimateDiff

Effective framework to animate most of existing personalized text-to-image models once for all, saving the efforts in model-specific tuning.

🖥 Github: https://github.com/guoyww/animatediff/

🖥 Colab: https://colab.research.google.com/github/camenduru/AnimateDiff-colab/blob/main/AnimateDiff_colab.ipynb

📕 Paper: https://arxiv.org/abs/2307.04725

🚀 Project: https://animatediff.github.io/

@Machine_learn
Neural Video Depth Stabilizer (ICCV2023) 🚀🚀🚀

🖥 Github: https://github.com/raymondwang987/nvds

Paper: https://arxiv.org/pdf/2307.08695v1.pdf

💨 Dataset: https://paperswithcode.com/dataset/wsvd

@Machine_learn
Forwarded from Eng. Hussein Sheikho 👨‍💻
This channels is for Programmers, Coders, Software Engineers.

0- Python
1- Data Science
2- Machine Learning
3- Data Visualization
4- Artificial Intelligence
5- Data Analysis
6- Statistics
7- Deep Learning
8- programming Languages

Data Science Channels:
https://www.tg-me.com/addlist/8_rRW2scgfRhOTc0

Main Channel:
https://www.tg-me.com/DataScienceM
FLASK: Fine-grained Language Model Evaluation Based on Alignment Skill Sets

🖥 Github: https://github.com/kaistai/flask

Paper: https://arxiv.org/pdf/2307.10928v1.pdf

💨 Dataset: https://paperswithcode.com/dataset/gsm8k

@Machine_learn
Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation of rPPG

🖥 Github: https://github.com/remotebiosensing/rppg

📕 Paper: https://arxiv.org/abs/2307.12644v1

🔥 Dataset: https://paperswithcode.com/dataset/ubfc-rppg

@Machine_learn
29733376.pdf
3.4 MB
Book: Test Your Skills In Python
SECOND EDITION
Authors: SHIVANI GOEL
ISBN: 978-93-5551-181-2
year: 2023
pages: 308
Tags:#Python
@Machine_learn
SVDFormer: Complementing Point Cloud via Self-view Augmentation and Self-structure Dual-generator

🖥 Github: https://github.com/czvvd/svdformer

Paper: https://arxiv.org/pdf/2307.08492v1.pdf

💨 Dataset: https://paperswithcode.com/dataset/shapenet

@Machine_learn
2025/07/07 19:19:48
Back to Top
HTML Embed Code: