what you know about chatGPT?
Do you want us to give you information about this on the channel?
Do you want us to give you information about this on the channel?
Anonymous Poll
80%
👍
20%
👎
OReilly.Python.in.a.Nutshell.pdf
5.8 MB
Python in a Nutshell: A Desktop Quick Reference, 4th Edition (2023)
#python #2023 #book
@Machine_learn
#python #2023 #book
@Machine_learn
Hariom_Tatsat,_Sahil_Puri_,_Brad_Lookabaugh_Machine_Learning_and.pdf
13.6 MB
Machine Learning & Data Science Blueprints for Finance From Building
Trading Strategies to Robo-Advisors Using Python
Authors: Hariom Tatsat, Sahil Puri & Brad Lookabaugh (2021)
#ML #book
@Machin_learn
Trading Strategies to Robo-Advisors Using Python
Authors: Hariom Tatsat, Sahil Puri & Brad Lookabaugh (2021)
#ML #book
@Machin_learn
Packt.Agile.Model-Based.Systems.Engineering.Cookbook.pdf
35.4 MB
Agile Model-Based Systems Engineering Cookbook: Improve system development by applying proven recipes for effective agile systems engineering, 2nd Edition (2023)
#Book #2023
@Machine_learn
#Book #2023
@Machine_learn
ChatGPT.Prompts.Mastering.pdf
757.3 KB
ChatGPT Prompts Mastering: A Guide to Crafting Clear and Effective Prompts – Beginners to Advanced Guide (2023)
Author: Christian Brown
#book #GPT #2023
@Machine_learn
Author: Christian Brown
#book #GPT #2023
@Machine_learn
⏩ OpenOccupancy: A Large Scale Benchmark for Surrounding Semantic Occupancy Perception.
OpenOccupancy first surrounding semantic occupancy perception benchmar.
🖥 Github: https://github.com/jeffwang987/openoccupancy
⏩ Paper: https://arxiv.org/abs/2303.03991v1
⭐️ Dataset: https://paperswithcode.com/dataset/synthcity
💨 Project: https://www.mmlab-ntu.com/project/styleganex/
@Machine_learn
OpenOccupancy first surrounding semantic occupancy perception benchmar.
🖥 Github: https://github.com/jeffwang987/openoccupancy
⏩ Paper: https://arxiv.org/abs/2303.03991v1
⭐️ Dataset: https://paperswithcode.com/dataset/synthcity
💨 Project: https://www.mmlab-ntu.com/project/styleganex/
@Machine_learn
Apress.Pro.Deep.Learning.pdf
15.9 MB
Pro Deep Learning with TensorFlow 2.0: A Mathematical Approach to Advanced Artificial Intelligence in Python (2023)
Author: Santanu Pattanayak
#book #DL #Book #2023
@Machine_learn
Author: Santanu Pattanayak
#book #DL #Book #2023
@Machine_learn
Apress.Explainable.AI.Recipes.pdf
8.2 MB
Explainable AI Recipes: Implement Solutions to Model Explainability and Interpretability with Python (2023)
Author: Pradeepta Mishra
#XAI #Ai #DL #Python
#2023
@Machine_learn
Author: Pradeepta Mishra
#XAI #Ai #DL #Python
#2023
@Machine_learn
OReilly.Python.in.a.Nutshell.pdf
5.8 MB
Python in a Nutshell: A Desktop Quick Reference, 4th Edition (2023)
Author: Alex Martelli
#book #python #2023
@Machine_learn
Author: Alex Martelli
#book #python #2023
@Machine_learn
Python Deep Learning.pdf
24 MB
Book: Python Deep Learning
Second Edition(Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow)
Authors: Ivan Vasilev,
Daniel Slater Gianmario ,Spacagna Peter, and Roelants Valentino Zocca
ISBN: 978-1-78934-846-0
year: 2019
pages: 379
Tags: #Python #Tensorflow #Keras #DL
@Machine_learn
Second Edition(Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow)
Authors: Ivan Vasilev,
Daniel Slater Gianmario ,Spacagna Peter, and Roelants Valentino Zocca
ISBN: 978-1-78934-846-0
year: 2019
pages: 379
Tags: #Python #Tensorflow #Keras #DL
@Machine_learn
Data-Mining-in-Python.pdf
12.8 MB
Book: DATA MINING
FOR BUSINESS ANALYTICS(Concepts, Techniques, and Applications in Python)
Authors: GALIT SHMUELI, PETER C., BRUCE PETER, and GEDECK NITIN R. PATEL
ISBN: Null
year: 2019
pages: 681
Tags: #Python #datamining #business
@Machine_learn
FOR BUSINESS ANALYTICS(Concepts, Techniques, and Applications in Python)
Authors: GALIT SHMUELI, PETER C., BRUCE PETER, and GEDECK NITIN R. PATEL
ISBN: Null
year: 2019
pages: 681
Tags: #Python #datamining #business
@Machine_learn
lecun-20230324-nyuphil.pdf
30.5 MB
⭐️Title: HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in HuggingFace
🖥 Github: https://github.com/microsoft/JARVIS
⏩ Paper: https://arxiv.org/abs/2303.17604v1
@Machine_learn
🖥 Github: https://github.com/microsoft/JARVIS
⏩ Paper: https://arxiv.org/abs/2303.17604v1
@Machine_learn
Designing Machine Learning Systems.pdf
10 MB
Book: Designing Machine Systems An Iterative Process for Production-Ready Applications
Authors: Chip Huyen
ISBN: 978-1-098-10796-3
year: 2022
pages: 463
Tags: #Python #datamining #ML
@Machine_learn
Authors: Chip Huyen
ISBN: 978-1-098-10796-3
year: 2022
pages: 463
Tags: #Python #datamining #ML
@Machine_learn
WavCaps: A ChatGPT-Assisted Weakly-Labelled Audio Captioning Dataset for Audio-Language Multimodal Research
Propose a three-stage processing pipeline for filtering noisy data and generating high-quality captions, where ChatGPT.
🖥 Github: https://github.com/xinhaomei/wavcaps
⏩ Paper: https://arxiv.org/abs/2303.17395v1
🧱Dataset: https://paperswithcode.com/dataset/sounddescs
@Machine_learn
Propose a three-stage processing pipeline for filtering noisy data and generating high-quality captions, where ChatGPT.
🖥 Github: https://github.com/xinhaomei/wavcaps
⏩ Paper: https://arxiv.org/abs/2303.17395v1
🧱Dataset: https://paperswithcode.com/dataset/sounddescs
@Machine_learn
Algorithms_for_Decision_Making_Mykel_J_Kochenderfer,_Tim_A_Wheeler.pdf
8 MB
Book: Algorithms for Decision Making
Authors: Mykel J. Kochenderfer, Tim A.Wheeler, and Kyle H. Wray
ISBN: Null
year: 2022
pages: 690
Tags: #Decision_Making #NN #LR
@Machine_learn
Authors: Mykel J. Kochenderfer, Tim A.Wheeler, and Kyle H. Wray
ISBN: Null
year: 2022
pages: 690
Tags: #Decision_Making #NN #LR
@Machine_learn
TM-Vector Else١.pdf
1.8 MB
Title: TM-vector: A Novel Forecasting Approach for Market stock movement with a Rich Representation of Twitter and Market data
Arxiv link: https://arxiv.org/abs/2304.02094
Authors: Faraz Sasani, @RaminMousa, Ali Karkehabadi, Samin Dehbashi, Ali Mohammadi
doi: https://doi.org/10.48550/arXiv.2304.02094
@Machine_learn
Arxiv link: https://arxiv.org/abs/2304.02094
Authors: Faraz Sasani, @RaminMousa, Ali Karkehabadi, Samin Dehbashi, Ali Mohammadi
doi: https://doi.org/10.48550/arXiv.2304.02094
@Machine_learn