⏩ PODA: Prompt-driven Zero-shot Domain Adaptation
.
🖥 Github: https://github.com/astra-vision/poda
⏩ Paprer: https://arxiv.org/abs/2212.03241v1
❤️ Pretrainde model: https://drive.google.com/drive/folders/15-NhVItiVbplg_If3HJibokJssu1NoxL?usp=share_link
⭐️ Dataset: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
.
🖥 Github: https://github.com/astra-vision/poda
⏩ Paprer: https://arxiv.org/abs/2212.03241v1
❤️ Pretrainde model: https://drive.google.com/drive/folders/15-NhVItiVbplg_If3HJibokJssu1NoxL?usp=share_link
⭐️ Dataset: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
🔼 IncepFormer: Efficient Inception Transformer with Pyramid Pooling for Semantic Segmentation
🖥 Github: https://github.com/shendu0321/incepformer
✔️ Project: https://github.com/shendu0321/IncepFormer
🗒 Paper: https://arxiv.org/abs/2212.03035v1
➡️ Data: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
🖥 Github: https://github.com/shendu0321/incepformer
✔️ Project: https://github.com/shendu0321/IncepFormer
🗒 Paper: https://arxiv.org/abs/2212.03035v1
➡️ Data: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
•(Multi-Modal Image Fusion)
。(nfrared and visible image fusion)
。 (Medical image fusion)
•(Digital Photography Image Fusion)
。(Multi-exposure image fusion)
。(Multi-focus image fusion)
• (Remote Sensing Image Fusion)
。(Pansharpening)
•(General Image Fusion Framerwork)
#(Survey)
#(Dataset)
#(Evaluation Metric)
#(General evaluation metric
github.com/miao19980215/Image-Fusion
@Machine_learn
。(nfrared and visible image fusion)
。 (Medical image fusion)
•(Digital Photography Image Fusion)
。(Multi-exposure image fusion)
。(Multi-focus image fusion)
• (Remote Sensing Image Fusion)
。(Pansharpening)
•(General Image Fusion Framerwork)
#(Survey)
#(Dataset)
#(Evaluation Metric)
#(General evaluation metric
github.com/miao19980215/Image-Fusion
@Machine_learn
✅ pypop7 (Pure-PYthon library of POPulation-based black-box OPtimization)
🖥 Github: https://github.com/evolutionary-intelligence/pypop
⏩ Paprer: https://arxiv.org/abs/2212.05652v1
⭐️ Derivative-Free Optimization (DFO): https://link.springer.com/article/10.1007/s10208-021-09513-z
@Machine_learn
$ pip install pypop7
🖥 Github: https://github.com/evolutionary-intelligence/pypop
⏩ Paprer: https://arxiv.org/abs/2212.05652v1
⭐️ Derivative-Free Optimization (DFO): https://link.springer.com/article/10.1007/s10208-021-09513-z
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ ECON: Explicit Clothed humans Obtained from Normals
🖥 Github: https://github.com/YuliangXiu/ECON
⏩ Paprer: https://arxiv.org/abs/2212.07422
📎 Demo: https://github.com/YuliangXiu/ECON#demo
✔️ Instructions: https://github.com/YuliangXiu/ECON#instructions
@Machine_learn
🖥 Github: https://github.com/YuliangXiu/ECON
⏩ Paprer: https://arxiv.org/abs/2212.07422
📎 Demo: https://github.com/YuliangXiu/ECON#demo
✔️ Instructions: https://github.com/YuliangXiu/ECON#instructions
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
✅ DeepLSD: Line Segment Detection and Refinement with Deep Image Gradients
🖥 Github: https://github.com/cvg/deeplsd
⏩ Paprer: https://arxiv.org/abs/2212.07766v1
✔️ Dataset: https://paperswithcode.com/dataset/hpatches
@Machine_learn
git clone --recurse-submodules [email protected]:cvg/DeepLSD.git
cd DeepLSD
🖥 Github: https://github.com/cvg/deeplsd
⏩ Paprer: https://arxiv.org/abs/2212.07766v1
✔️ Dataset: https://paperswithcode.com/dataset/hpatches
@Machine_learn
⏩ GPViT: A High Resolution Non-Hierarchical Vision Transformer with Group Propagation
🖥 Github: https://github.com/chenhongyiyang/gpvit
➡️Paprer: https://arxiv.org/abs/2212.06795v1
✔️Data Preparation: https://paperswithcode.com/dataset/must-c
@Machine_learn
🖥 Github: https://github.com/chenhongyiyang/gpvit
➡️Paprer: https://arxiv.org/abs/2212.06795v1
✔️Data Preparation: https://paperswithcode.com/dataset/must-c
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
✅️ JRBD: Egocentric Perception of Humans
⭐️ Dataset: https://jrdb.erc.monash.edu/
🖥 Github: https://github.com/JRDB-dataset/jrdb_toolkit/
⏩ JRDB-Pose: https://jrdb.erc.monash.edu/dataset/pose#toolkit
✅ Paper: arxiv.org/pdf/1910.11792.pdf
@Machine_learn
⭐️ Dataset: https://jrdb.erc.monash.edu/
🖥 Github: https://github.com/JRDB-dataset/jrdb_toolkit/
⏩ JRDB-Pose: https://jrdb.erc.monash.edu/dataset/pose#toolkit
✅ Paper: arxiv.org/pdf/1910.11792.pdf
@Machine_learn
⚡️ MVTN: Learning Multi-View Transformations for 3D Understanding
🖥Github: https://github.com/ajhamdi/mvtorch
⭐️ Paper: https://arxiv.org/abs/2212.13462v1
⏩ Dataset: https://paperswithcode.com/dataset/modelnet
⏩ Сlassification example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/classification.ipynb
➡️ Segmentation example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/segmentation.ipynb
@Machine_learn
🖥Github: https://github.com/ajhamdi/mvtorch
⭐️ Paper: https://arxiv.org/abs/2212.13462v1
⏩ Dataset: https://paperswithcode.com/dataset/modelnet
⏩ Сlassification example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/classification.ipynb
➡️ Segmentation example: https://github.com/ajhamdi/mvtorch/blob/main/docs/tutorials/segmentation.ipynb
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
When you are presenting a topic in the class and make eye contact with your friends😹😹😹
@Machine_learn
@Machine_learn
⭐️ The CropAndWeed Dataset: A Multi-Modal Learning Approach for Efficient Crop and Weed Manipulation
🖥 Github: https://paperswithcode.com/paper/the-cropandweed-dataset-a-multi-modal
⏩ Paper: https://openaccess.thecvf.com/content/WACV2023/html/Steininger_The_CropAndWeed_Dataset_A_Multi-Modal_Learning_Approach_for_Efficient_Crop_WACV_2023_paper.html
➡️ Datasets: https://paperswithcode.com/dataset/cropandweed-dataset
@Machine_learn
🖥 Github: https://paperswithcode.com/paper/the-cropandweed-dataset-a-multi-modal
⏩ Paper: https://openaccess.thecvf.com/content/WACV2023/html/Steininger_The_CropAndWeed_Dataset_A_Multi-Modal_Learning_Approach_for_Efficient_Crop_WACV_2023_paper.html
➡️ Datasets: https://paperswithcode.com/dataset/cropandweed-dataset
@Machine_learn
Math-for-Programmers.pdf
27.7 MB
MEAP Edition
Manning Early Access Program
Math for Programmers
3D graphics, machine learning, and simulations with Python
Version 11
#book @Machine_learn
Manning Early Access Program
Math for Programmers
3D graphics, machine learning, and simulations with Python
Version 11
#book @Machine_learn