Machine learning Tom M
#book
link :https://www.cin.ufpe.br/~cavmj/Machine%20-%20Learning%20-%20Tom%20Mitchell.pdf
@Machine_learn
#book
link :https://www.cin.ufpe.br/~cavmj/Machine%20-%20Learning%20-%20Tom%20Mitchell.pdf
@Machine_learn
🚀 TorchSparse: Efficient Point Cloud Inference Engine
Github: https://github.com/mit-han-lab/torchsparse
Paper: https://arxiv.org/abs/2204.10319v1
Dataset: https://paperswithcode.com/dataset/nuscenes
Demo: https://paperswithcode.com/dataset/pipal-perceptual-iqa-dataset
@Machine_leaen
Github: https://github.com/mit-han-lab/torchsparse
Paper: https://arxiv.org/abs/2204.10319v1
Dataset: https://paperswithcode.com/dataset/nuscenes
Demo: https://paperswithcode.com/dataset/pipal-perceptual-iqa-dataset
@Machine_leaen
GitHub
GitHub - mit-han-lab/torchsparse: [MICRO'23, MLSys'22] TorchSparse: Efficient Training and Inference Framework for Sparse Convolution…
[MICRO'23, MLSys'22] TorchSparse: Efficient Training and Inference Framework for Sparse Convolution on GPUs. - mit-han-lab/torchsparse
Deep_RL.pdf
3.4 MB
Deep Reinforcement Learning
CS 285, University of California, Berkeley
Harry Zhang December 2019
#book
@Machine_learn
CS 285, University of California, Berkeley
Harry Zhang December 2019
#book
@Machine_learn
⭐️ Traffic4cast 2022 Competition: from few public vehicle counters to entire city-wide traffic
🖥 Github: https://github.com/iarai/neurips2022-traffic4cast
🗒 Paper: https://arxiv.org/abs/2211.09984v1
➡️ Dataset: https://developer.here.com/sample-data
@Machine_learn
🖥 Github: https://github.com/iarai/neurips2022-traffic4cast
🗒 Paper: https://arxiv.org/abs/2211.09984v1
➡️ Dataset: https://developer.here.com/sample-data
@Machine_learn
➡️ AlphaPose: Whole-Body Regional Multi-Person Pose Estimation and Tracking in Real-Time
🖥 Github: https://github.com/MVIG-SJTU/AlphaPose
📝 Colab: https://colab.research.google.com/drive/1c7xb_7U61HmeJp55xjXs24hf1GUtHmPs?usp=sharing
🗒 Paper: https://arxiv.org/abs/2211.03375v1
➡️ Dataset: https://paperswithcode.com/dataset/hico-det
@Machine_learn
🖥 Github: https://github.com/MVIG-SJTU/AlphaPose
📝 Colab: https://colab.research.google.com/drive/1c7xb_7U61HmeJp55xjXs24hf1GUtHmPs?usp=sharing
🗒 Paper: https://arxiv.org/abs/2211.03375v1
➡️ Dataset: https://paperswithcode.com/dataset/hico-det
@Machine_learn
🚀 Stable Diffusion web UI
UI на основе библиотеки Gradio для Stable Diffusion. Большое количество фич для генерации контента с удобным интерфейсом.
🖥 Github: https://github.com/AUTOMATIC1111/stable-diffusion-webui
⏩ Scripts: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts
⭐️ Features: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features
@Machine_learn
UI на основе библиотеки Gradio для Stable Diffusion. Большое количество фич для генерации контента с удобным интерфейсом.
🖥 Github: https://github.com/AUTOMATIC1111/stable-diffusion-webui
⏩ Scripts: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts
⭐️ Features: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features
@Machine_learn
🚀 DiffusionDet: Diffusion Model for Object Detection
DiffusionDet — первая диффузионная модель для обнаружения объектов.
🖥 Github: https://github.com/shoufachen/diffusiondet
➡️ Paper: https://arxiv.org/abs/2211.09788v1
🗒 Getting Started: https://github.com/ShoufaChen/DiffusionDet/blob/main/GETTING_STARTED.md
🖥 Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
DiffusionDet — первая диффузионная модель для обнаружения объектов.
🖥 Github: https://github.com/shoufachen/diffusiondet
➡️ Paper: https://arxiv.org/abs/2211.09788v1
🗒 Getting Started: https://github.com/ShoufaChen/DiffusionDet/blob/main/GETTING_STARTED.md
🖥 Dataset: https://paperswithcode.com/dataset/imagenet
@Machine_learn
با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)
جهت تهیه می تونین به ایدی بنده مراجعه کنین
@Raminmousa
1: introduction to machine learning
2: Regression (linear and non-linear)
3: Tensorflow introduction
4: Tensorflow computaion graph
5: Tensorflow optimizer and loss function
6: Tensorflow linear and non linear regression
7: logistic regression
8: Tensorflow regression
___________
9: introduction to traditional machine learning
*10: knn and desicion tree
*11: desicion tree and Naive bayes
*12: desicion tree, knn, Naive bayes implementation
*13: k-means
*14: Guassion Mixture Model(GMM)
*15: implementation K-means and GMM
_
16: introduction to Artificial Neural Network
17: Multi-level Neural Network
18: Introduction to Convolution Neural Network
19: Tensorflow Multi-level Neural Network
20:Tensorflow CNN
21:CNN image clasaification
22: Cnn text clasaification
23: Recurrent Neural Network(RNN)
جهت تهیه می تونین به ایدی بنده مراجعه کنین
@Raminmousa
Machine learning books and papers pinned «با عرض سلام دو پکیچ یادگیری ماشین و یادگیری عمیق را برای دوستانی که می خواهند تا فرداشب با تخفیف ۵۰٪ مجدد قرار دادیم این تخفیف اخرین سری از تخفیف های این دو پکیچ می باشد 1: introduction to machine learning 2: Regression (linear and non-linear) 3: Tensorflow…»
⏩ PODA: Prompt-driven Zero-shot Domain Adaptation
.
🖥 Github: https://github.com/astra-vision/poda
⏩ Paprer: https://arxiv.org/abs/2212.03241v1
❤️ Pretrainde model: https://drive.google.com/drive/folders/15-NhVItiVbplg_If3HJibokJssu1NoxL?usp=share_link
⭐️ Dataset: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
.
🖥 Github: https://github.com/astra-vision/poda
⏩ Paprer: https://arxiv.org/abs/2212.03241v1
❤️ Pretrainde model: https://drive.google.com/drive/folders/15-NhVItiVbplg_If3HJibokJssu1NoxL?usp=share_link
⭐️ Dataset: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
🔼 IncepFormer: Efficient Inception Transformer with Pyramid Pooling for Semantic Segmentation
🖥 Github: https://github.com/shendu0321/incepformer
✔️ Project: https://github.com/shendu0321/IncepFormer
🗒 Paper: https://arxiv.org/abs/2212.03035v1
➡️ Data: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
🖥 Github: https://github.com/shendu0321/incepformer
✔️ Project: https://github.com/shendu0321/IncepFormer
🗒 Paper: https://arxiv.org/abs/2212.03035v1
➡️ Data: https://paperswithcode.com/dataset/cityscapes
@Machine_learn
•(Multi-Modal Image Fusion)
。(nfrared and visible image fusion)
。 (Medical image fusion)
•(Digital Photography Image Fusion)
。(Multi-exposure image fusion)
。(Multi-focus image fusion)
• (Remote Sensing Image Fusion)
。(Pansharpening)
•(General Image Fusion Framerwork)
#(Survey)
#(Dataset)
#(Evaluation Metric)
#(General evaluation metric
github.com/miao19980215/Image-Fusion
@Machine_learn
。(nfrared and visible image fusion)
。 (Medical image fusion)
•(Digital Photography Image Fusion)
。(Multi-exposure image fusion)
。(Multi-focus image fusion)
• (Remote Sensing Image Fusion)
。(Pansharpening)
•(General Image Fusion Framerwork)
#(Survey)
#(Dataset)
#(Evaluation Metric)
#(General evaluation metric
github.com/miao19980215/Image-Fusion
@Machine_learn
✅ pypop7 (Pure-PYthon library of POPulation-based black-box OPtimization)
🖥 Github: https://github.com/evolutionary-intelligence/pypop
⏩ Paprer: https://arxiv.org/abs/2212.05652v1
⭐️ Derivative-Free Optimization (DFO): https://link.springer.com/article/10.1007/s10208-021-09513-z
@Machine_learn
$ pip install pypop7
🖥 Github: https://github.com/evolutionary-intelligence/pypop
⏩ Paprer: https://arxiv.org/abs/2212.05652v1
⭐️ Derivative-Free Optimization (DFO): https://link.springer.com/article/10.1007/s10208-021-09513-z
@Machine_learn
This media is not supported in your browser
VIEW IN TELEGRAM
✔️ ECON: Explicit Clothed humans Obtained from Normals
🖥 Github: https://github.com/YuliangXiu/ECON
⏩ Paprer: https://arxiv.org/abs/2212.07422
📎 Demo: https://github.com/YuliangXiu/ECON#demo
✔️ Instructions: https://github.com/YuliangXiu/ECON#instructions
@Machine_learn
🖥 Github: https://github.com/YuliangXiu/ECON
⏩ Paprer: https://arxiv.org/abs/2212.07422
📎 Demo: https://github.com/YuliangXiu/ECON#demo
✔️ Instructions: https://github.com/YuliangXiu/ECON#instructions
@Machine_learn