📶 ISNet: Integrate Image-Level and Semantic-Level Context for Semantic Segmentation
Github: https://github.com/segmentationblwx/sssegmentation
Paper: https://arxiv.org/abs/2108.12382v1
Dataset: https://cs.stanford.edu/~roozbeh/pascal-context/
@Machine_learn
Github: https://github.com/segmentationblwx/sssegmentation
Paper: https://arxiv.org/abs/2108.12382v1
Dataset: https://cs.stanford.edu/~roozbeh/pascal-context/
@Machine_learn
🌐 A Partition Filter Network for Joint Entity and Relation Extraction
Github: https://github.com/Coopercoppers/PFN
Paper: https://arxiv.org/abs/2108.12202v2
@Machine_learn
Github: https://github.com/Coopercoppers/PFN
Paper: https://arxiv.org/abs/2108.12202v2
@Machine_learn
ℹ️ LIGAR: Lightweight General-purpose Action Recognition
Github: https://github.com/openvinotoolkit/training_extensions
Paper: https://arxiv.org/abs/2108.13153v1
Models: https://github.com/openvinotoolkit/training_extensions/tree/develop/misc
@Machine_learn
Github: https://github.com/openvinotoolkit/training_extensions
Paper: https://arxiv.org/abs/2108.13153v1
Models: https://github.com/openvinotoolkit/training_extensions/tree/develop/misc
@Machine_learn
Lane Detection With OpenCV (Part 1)
1. Intro
2. Thresholding
3. Perspective Correction
4. Warping
https://dzone.com/articles/lane-detection-with-opencv
@Machine_learn
1. Intro
2. Thresholding
3. Perspective Correction
4. Warping
https://dzone.com/articles/lane-detection-with-opencv
@Machine_learn
Type4Py: Deep Similarity Learning-Based Type Inference for #python
Over the past decade, machine learning (ML) has been applied successfully to a variety of tasks such as computer vision and natural language processing. Motivated by this, in recent years, researchers have employed ML techniques to solve code-related problems, including but not limited to, code completion, code generation, program repair, and type inference.
Dynamic programming languages like Python and TypeScript allows developers to optionally define type annotations and benefit from the advantages of static typing such as better code completion, early bug detection, and etc. However, retrofitting types is a cumbersome and error-prone process. To address this, we propose Type4Py, an ML-based type auto-completion for Python. It assists developers to gradually add type annotations to their codebases.
@Machine_learn
https://github.com/saltudelft/type4py
Announcing post: https://mirblog.net/index.php/2021/07/31/development-and-release-of-type4py-machine-learning-based-type-auto-completion-for-python/
Over the past decade, machine learning (ML) has been applied successfully to a variety of tasks such as computer vision and natural language processing. Motivated by this, in recent years, researchers have employed ML techniques to solve code-related problems, including but not limited to, code completion, code generation, program repair, and type inference.
Dynamic programming languages like Python and TypeScript allows developers to optionally define type annotations and benefit from the advantages of static typing such as better code completion, early bug detection, and etc. However, retrofitting types is a cumbersome and error-prone process. To address this, we propose Type4Py, an ML-based type auto-completion for Python. It assists developers to gradually add type annotations to their codebases.
@Machine_learn
https://github.com/saltudelft/type4py
Announcing post: https://mirblog.net/index.php/2021/07/31/development-and-release-of-type4py-machine-learning-based-type-auto-completion-for-python/
Learning Neural Causal Models with Active Interventions
Github: https://github.com/nke001/causal_learning_unknown_interventions
Paper: https://arxiv.org/abs/2109.02429v1
@Machine_learn
Github: https://github.com/nke001/causal_learning_unknown_interventions
Paper: https://arxiv.org/abs/2109.02429v1
@Machine_learn
سلام
دوستاني كه راجع به پياده سازي پايان نامه , مقاله و يا ... مشكل دارند، مي تونن با ايدي بنده در ارتباط باشند.
telg: @Raminmousa
همچنين جهت صحبت كردن راجع به موارد گفته شده مي تونن با Whats app بنده در ارتباط باشند.
Whats app: +989333900804
دوستاني كه راجع به پياده سازي پايان نامه , مقاله و يا ... مشكل دارند، مي تونن با ايدي بنده در ارتباط باشند.
telg: @Raminmousa
همچنين جهت صحبت كردن راجع به موارد گفته شده مي تونن با Whats app بنده در ارتباط باشند.
Whats app: +989333900804
Paper:
https://arxiv.org/pdf/2105.06993.pdf
Project Page:
https://omnimatte.github.io/
Github:
https://github.com/erikalu/omnimatte
Supplimentary material:
https://omnimatte.github.io/supplementary/index.html
Explained:
https://www.youtube.com/watch?v=lCBSGOwV-_o
@Machine_learn
https://arxiv.org/pdf/2105.06993.pdf
Project Page:
https://omnimatte.github.io/
Github:
https://github.com/erikalu/omnimatte
Supplimentary material:
https://omnimatte.github.io/supplementary/index.html
Explained:
https://www.youtube.com/watch?v=lCBSGOwV-_o
@Machine_learn
omnimatte.github.io
Omnimatte: Associating Objects and Their Effects in Video
Project page for 'Omnimatte: Associating Objects and Their Effects in Video.'
Reinforcement Learning Lecture Series (2021) - A comprehensive look at modern reinforcement learning by DeepMind & UCL.
Course Page:
https://deepmind.com/learning-resources/reinforcement-learning-series-2021
Lectures:
https://www.youtube.com/playlist?list=PLqYmG7hTraZDVH599EItlEWsUOsJbAodm
@Machine_learn
Course Page:
https://deepmind.com/learning-resources/reinforcement-learning-series-2021
Lectures:
https://www.youtube.com/playlist?list=PLqYmG7hTraZDVH599EItlEWsUOsJbAodm
@Machine_learn
Google DeepMind
Artificial intelligence could be one of humanity’s most useful inventions. We research and build safe artificial intelligence systems. We're committed to solving intelligence, to advance science...
با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند:
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
1-Deep Learning Basic
-01_Introduction
--01_How_TensorFlow_Works
--02_Creating_and_Using_Tensors
--03_Implementing_Activation_Functions
-02_TensorFlow_Way
--01_Operations_as_a_Computational_Graph
--02_Implementing_Loss_Functions
--03_Implementing_Back_Propagation
--04_Working_with_Batch_and_Stochastic_Training
--05_Evaluating_Models
-03_Linear_Regression
--linear regression
--Logistic Regression
-04_Neural_Networks
--01_Introduction
--02_Single_Hidden_Layer_Network
--03_Using_Multiple_Layers
-05_Convolutional_Neural_Networks
--Convolution Neural Networks
--Convolutional Neural Networks Tensorflow
--TFRecord For Deep learning Models
-06_Recurrent_Neural_Networks
--Recurrent Neural Networks (RNN)
2-Classification apparel
-Classification apparel double capsule
-Classification apparel double cnn
3-ALZHEIMERS USING CNN(ResNet)
4-Fake News (Covid-19 dataset)
-Multi-channel
-3DCNN model
-Base line+ Char CNN
-Fake News Covid CapsuleNet
5-3DCNN Fake News
6-recommender systems
-GRU+LSTM MovieLens
7-Multi-Domain Sentiment Analysis
-Dranziera CapsuleNet
-Dranziera CNN Multi-channel
-Dranziera LSTM
8-Persian Multi-Domain SA
-Bi-GRU Capsule Net
-Multi-CNN
9-Recommendation system
-Factorization Recommender, Ranking Factorization Recommender, Item Similarity Recommender (turicreate)
-SVD, SVD++, NMF, Slope One, k-NN, Centered k-NN, k-NN Baseline, Co-Clustering(surprise)
10-NihX-Ray
-optimized CNN on FullDataset Nih-Xray
-MobileNet
-Transfer learning
-Capsule Network on FullDataset Nih-Xray
هزينه اين پكيج ٥٠٠هزار مي باشد و صرفا هزينه تهيه ديتاست هاست.
جهت خريد مي توانيد با ايدي بنده در ارتباط باشيد
@Raminmousa
👍1
Machine learning books and papers pinned «با عرض سلام ما پكيج ٣٦ پروژه عملي با يادگيري عميق همراه با داكيومنت فارسي را براي دوستاني كه مي خواهند در اين حوزه به صورت عملي كار كنند تهيه كرديم سرفصل هاي اين پكيج به ترتيب زير مي باشند: 1-Deep Learning Basic -01_Introduction --01_How_TensorFlow_Works…»
Texformer: 3D Human Texture Estimation from a Single Image with Transformers
Github: https://github.com/xuxy09/texformer
Paper: http://arxiv.org/abs/2109.02563
Meta data: https://www.dropbox.com/s/ekxn300cuw8bw6b/meta.zip
@Machine_learn
Github: https://github.com/xuxy09/texformer
Paper: http://arxiv.org/abs/2109.02563
Meta data: https://www.dropbox.com/s/ekxn300cuw8bw6b/meta.zip
@Machine_learn
2104.11475.pdf
349.6 KB
A study on Ensemble Learning for Time Series
Forecasting and the need for Meta-Learning #Paper #2021 @Machine_learn
Forecasting and the need for Meta-Learning #Paper #2021 @Machine_learn
2104.02395.pdf
417.4 KB
Ensemble deep learning: A review #Paper #2021 @Machine_learn
2101.08387_2.pdf
967.4 KB
A Survey on Ensemble Learning under the Era of Deep Learning #Paper #2021 @Machine_learn
✅ AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab
Github: https://github.com/alibaba/AliceMind
Paper: https://arxiv.org/abs/2109.05687v1
Dataset: https://paperswithcode.com/dataset/glue
@Machine_learn
Github: https://github.com/alibaba/AliceMind
Paper: https://arxiv.org/abs/2109.05687v1
Dataset: https://paperswithcode.com/dataset/glue
@Machine_learn
sensors-21-05413-v2.pdf
2.3 MB
A New Deep Learning-Based Methodology for Video Deepfake
Detection Using XGBoost #Deepfake #Paper @Machine_learn
Detection Using XGBoost #Deepfake #Paper @Machine_learn
1-s2.0-S1738573319308587-main.pdf
1.8 MB
ConvXGB: A new deep learning model for classification problems
based on CNN and XGBoost #XGBoost #Paper @Machine_learn
based on CNN and XGBoost #XGBoost #Paper @Machine_learn