This media is not supported in your browser
VIEW IN TELEGRAM
بسم الله الرحمن الرحیم
ماه رمضان [همان ماه ] است که در آن، قرآن فرو فرستاده شده است، [کتابى ] که مردم را راهبر، و[متضمن ] دلایل آشکار هدایت، و[میزان ] تشخیص حق از باطل است. پس هر کس از شما این ماه را درک کند باید آن را روزه بدارد، و کسى که بیمار یا در سفر است [باید به شمارهء آن،] تعدادى از روزهاى دیگر[را روزه بدارد]. خدا براى شما آسانى مى خواهد و براى شما دشوارى نمى خواهد؛ تا شمارهء[مقرر] را تکمیل کنید و خدا را به پاس آنکه رهنمونیتان کرده است به بزرگى بستایید، و باشد که شکرگزارى کنید.
( بقره ۱۸۵)
رمضان مبارک
@Machine_learn
ماه رمضان [همان ماه ] است که در آن، قرآن فرو فرستاده شده است، [کتابى ] که مردم را راهبر، و[متضمن ] دلایل آشکار هدایت، و[میزان ] تشخیص حق از باطل است. پس هر کس از شما این ماه را درک کند باید آن را روزه بدارد، و کسى که بیمار یا در سفر است [باید به شمارهء آن،] تعدادى از روزهاى دیگر[را روزه بدارد]. خدا براى شما آسانى مى خواهد و براى شما دشوارى نمى خواهد؛ تا شمارهء[مقرر] را تکمیل کنید و خدا را به پاس آنکه رهنمونیتان کرده است به بزرگى بستایید، و باشد که شکرگزارى کنید.
( بقره ۱۸۵)
رمضان مبارک
@Machine_learn
Hyperparameter optimization in python. Part 1: Scikit-Optimize.
___________________________
@Machine_learn
___________________________
https://towardsdatascience.com/hyperparameter-optimization-in-python-part-1-scikit-optimize-754e485d24fe
___________________________
@Machine_learn
___________________________
https://towardsdatascience.com/hyperparameter-optimization-in-python-part-1-scikit-optimize-754e485d24fe
How to Visualize Filters and Feature Maps in Convolutional Neural Networks
________________________
@Machine_learn
________________________
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
________________________
@Machine_learn
________________________
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
Introducing TensorFlow Graphics: Computer Graphics Meets Deep Learning
Github : https://github.com/tensorflow/graphics
Article: https://medium.com/tensorflow/introducing-tensorflow-graphics-computer-graphics-meets-deep-learning-c8e3877b7668
______________________
@Machine_learn
______________________
Github : https://github.com/tensorflow/graphics
Article: https://medium.com/tensorflow/introducing-tensorflow-graphics-computer-graphics-meets-deep-learning-c8e3877b7668
______________________
@Machine_learn
______________________
GitHub
GitHub - tensorflow/graphics: TensorFlow Graphics: Differentiable Graphics Layers for TensorFlow
TensorFlow Graphics: Differentiable Graphics Layers for TensorFlow - tensorflow/graphics
Announcing Open Images V5 and the ICCV 2019 Open Images Challenge
#Challenge
____________
@Machine_learn
_____________
http://ai.googleblog.com/2019/05/announcing-open-images-v5-and-iccv-2019.html
#Challenge
____________
@Machine_learn
_____________
http://ai.googleblog.com/2019/05/announcing-open-images-v5-and-iccv-2019.html
research.google
Announcing Open Images V5 and the ICCV 2019 Open Images Challenge
Posted by Vittorio Ferrari, Research Scientist, Machine Perception In 2016, we introduced Open Images, a collaborative release of ~9 million imag...
Computer Age Statistical Inference - Algorithms, Evidence, & Data Science
Table of Content:
Part I Classic Statistical Inference
1 Algorithms and Inference
2 Frequentist Inference
3 Bayesian Inference
4 Fisherian Inference and Maximum Likelihood Estimation
5 Parametric Models and Exponential Families
Part II Early Computer-Age Methods
6 Empirical Bayes
7 James–Stein Estimation and Ridge Regression
8 Generalized Linear Models and Regression Trees
9 Survival Analysis and the EM Algorithm
10 The Jackknife and the Bootstrap
11 Bootstrap Confidence Intervals
12 Cross-Validation and Cp Estimates of Prediction Error
13 Objective Bayes Inference and MCMC
14 Postwar Statistical Inference and Methodology
Part III Twenty-First-Century Topics
15 Large-Scale Hypothesis Testing and FDRs
16 Sparse Modeling and the Lasso
17 Random Forests and Boosting
18 Neural Networks and Deep Learning
19 Support-Vector Machines and Kernel Methods
20 Inference After Model Selection
21 Empirical Bayes Estimation
#book
@Machine_learn
Table of Content:
Part I Classic Statistical Inference
1 Algorithms and Inference
2 Frequentist Inference
3 Bayesian Inference
4 Fisherian Inference and Maximum Likelihood Estimation
5 Parametric Models and Exponential Families
Part II Early Computer-Age Methods
6 Empirical Bayes
7 James–Stein Estimation and Ridge Regression
8 Generalized Linear Models and Regression Trees
9 Survival Analysis and the EM Algorithm
10 The Jackknife and the Bootstrap
11 Bootstrap Confidence Intervals
12 Cross-Validation and Cp Estimates of Prediction Error
13 Objective Bayes Inference and MCMC
14 Postwar Statistical Inference and Methodology
Part III Twenty-First-Century Topics
15 Large-Scale Hypothesis Testing and FDRs
16 Sparse Modeling and the Lasso
17 Random Forests and Boosting
18 Neural Networks and Deep Learning
19 Support-Vector Machines and Kernel Methods
20 Inference After Model Selection
21 Empirical Bayes Estimation
#book
@Machine_learn