Telegram Web Link
This media is not supported in your browser
VIEW IN TELEGRAM
بسم الله الرحمن الرحیم

ماه رمضان [همان ماه ] است که در آن، قرآن فرو فرستاده شده است، [کتابى ] که مردم را راهبر، و[متضمن ] دلایل آشکار هدایت، و[میزان ] تشخیص حق از باطل است. پس هر کس از شما این ماه را درک کند باید آن را روزه بدارد، و کسى که بیمار یا در سفر است [باید به شمارهء آن،] تعدادى از روزهاى دیگر[را روزه بدارد]. خدا براى شما آسانى مى خواهد و براى شما دشوارى نمى خواهد؛ تا شمارهء[مقرر] را تکمیل کنید و خدا را به پاس آنکه رهنمونیتان کرده است به بزرگى بستایید، و باشد که شکرگزارى کنید.
( بقره ۱۸۵)

رمضان مبارک
@Machine_learn
Hyperparameter optimization in python. Part 1: Scikit-Optimize.

___________________________

@Machine_learn

___________________________
https://towardsdatascience.com/hyperparameter-optimization-in-python-part-1-scikit-optimize-754e485d24fe
Data Science Essentials in Python — Dmitry Zinoviev (en) 2916
#book
#middle
@Machine_learn
2_5447441436813296252.pdf
10.4 MB
Data Science Essentials in Python — Dmitry Zinoviev (en) 2916
#book
#middle
@Machine_learn
#Reinforcement Learning, Fast and Slow
#paper
@Machine_learn
#Top 10 algorithms in data mining
#C4.5, #k-Means, #SVM,
#Apriori, #EM, #PageRank, #AdaBoost, #kNN, #Naive Bayes, and #CART
@Machine_learn
How to Visualize Filters and Feature Maps in Convolutional Neural Networks


________________________

@Machine_learn

________________________
https://machinelearningmastery.com/how-to-visualize-filters-and-feature-maps-in-convolutional-neural-networks/
#Big Data Analysis for
Bioinformatics and
Biomedical Discoveries
#book
#big_data @Machine_learn
2_5395538844395242121.pdf
6.1 MB
#Big Data Analysis for
Bioinformatics and
Biomedical Discoveries
#book
#big_data @Machine_learn
Snake Wrangling for Kids — Jason R. Briggs (en) 2007
#beginner #book
@Machine_learn
2_5393515601266213701.pdf
1.3 MB
Snake Wrangling for Kids — Jason R. Briggs (en) 2007
#beginner #book
@Machine_learn
#Computer Vision news from RSIP VISION. April 2019
#News
@Machine_learn
2_5294444325088789129.pdf
3.1 MB
#Computer Vision news from RSIP VISION. April 2019
#News
@Machine_learn
Computer Age Statistical Inference - Algorithms, Evidence, & Data Science
Table of Content:
Part I Classic Statistical Inference
1 Algorithms and Inference
2 Frequentist Inference
3 Bayesian Inference
4 Fisherian Inference and Maximum Likelihood Estimation
5 Parametric Models and Exponential Families
Part II Early Computer-Age Methods
6 Empirical Bayes
7 James–Stein Estimation and Ridge Regression
8 Generalized Linear Models and Regression Trees
9 Survival Analysis and the EM Algorithm
10 The Jackknife and the Bootstrap
11 Bootstrap Confidence Intervals
12 Cross-Validation and Cp Estimates of Prediction Error
13 Objective Bayes Inference and MCMC
14 Postwar Statistical Inference and Methodology
Part III Twenty-First-Century Topics
15 Large-Scale Hypothesis Testing and FDRs
16 Sparse Modeling and the Lasso
17 Random Forests and Boosting
18 Neural Networks and Deep Learning
19 Support-Vector Machines and Kernel Methods
20 Inference After Model Selection
21 Empirical Bayes Estimation
#book
@Machine_learn
2025/07/12 20:37:36
Back to Top
HTML Embed Code: